接觸角測(cè)量儀通常意義上是以光學(xué)影像法測(cè)量接觸角作為其通常的方法,可用于評(píng)估固體材料表面的物理化學(xué)性質(zhì);而水滴角測(cè)量儀是指采用蒸餾水或超純水作為探針液體,評(píng)估固體材料的物理化學(xué)性質(zhì)的測(cè)試儀器。從如上意義上來講,通常意義上的接觸角測(cè)量儀或水滴角測(cè)量儀的測(cè)量對(duì)像或應(yīng)用的對(duì)像是以固體材料為主。
接觸角測(cè)量儀或水滴角測(cè)量儀的應(yīng)用包括:
1、仿生材料的接觸角或水接觸角測(cè)量:主要用于評(píng)估固體材料的超疏水性,如仿荷葉效應(yīng)、水稻葉等。
2、材料表面清潔度分析,如評(píng)估液晶屏、OLED、晶圓(wafer)、硅片、半導(dǎo)體、PCB等材料的水接觸角值或水滴角值測(cè)量。
3、材料表面改性,如將親水材料改成疏水材料或改材料為超親水材料。
長期以來,接觸角或水滴角或水接觸角的測(cè)量均是借用數(shù)碼量角器的儀器進(jìn)行分析的。最早的歷史可至1943年Zisman教授團(tuán)隊(duì)的顯微量角法開始,直至20世紀(jì)80年代發(fā)現(xiàn)了計(jì)算機(jī)的圓擬合、橢圓擬合、曲線擬合(切線法)等可以量測(cè)角度以后,數(shù)碼量角器法一直被用戶所使用至今。但是,由于技術(shù)的進(jìn)步以及科技的發(fā)展,量角器法的局限性顯得越來越跟不上形勢(shì)。至20世紀(jì)90年代,以A.W.Neumann教授團(tuán)隊(duì)為主的專家提出擬合Young-Laplace方程擬合法可以采用影像原理分析液體的表面張力值以及液液的界面張力值,進(jìn)而通過分析過程可以發(fā)現(xiàn),在分析中同時(shí)可以分析得到相應(yīng)的接觸角值。因而,出現(xiàn)了相應(yīng)的采用Young-Laplace方程的商業(yè)化的接觸角測(cè)量儀或水滴角測(cè)量儀。至此,接觸角測(cè)量儀或水滴角測(cè)量儀從此從量角器法真正進(jìn)入界面化學(xué)分析的階段。
但是,正是由于初期商業(yè)化的接觸角測(cè)量儀(Young-Laplace方程擬合)是脫胎于表面張力或界面張力測(cè)量,因而,在實(shí)際應(yīng)用中這個(gè)前提假設(shè)的缺陷同時(shí)也非常明顯,即Young-Laplace方程擬合算法無法用于實(shí)際的非軸對(duì)稱條件下的接觸角測(cè)量。而客觀存在的事實(shí)正在于,由于材料的表面粗糙度、化學(xué)多樣性以及異構(gòu)性,很少有固體材料的表面會(huì)形成完全的軸對(duì)稱圖像。
這正對(duì)于接觸角測(cè)量儀或水滴角測(cè)量儀的研制提出了更高的要求。上海梭倫研制并獲得中國發(fā)明專利授權(quán)的阿莎算法(ADSA-RealDrop)真正解決了非軸對(duì)稱問題,實(shí)現(xiàn)了接觸角測(cè)量儀或水滴角測(cè)量儀測(cè)量技術(shù)方面的重大突破。
接觸角測(cè)量儀或水滴角測(cè)量儀雖然有了阿莎算法后從而實(shí)現(xiàn)了明正言順的應(yīng)用于界面化學(xué)的分析。但是,長期以來還有一個(gè)問題沒有被解決,即是否可以實(shí)現(xiàn)固體材料本身的表面張力分析,專業(yè)上我們稱之為固體材料的表面自由能測(cè)量。
固體表面張力即固體表面自由能的測(cè)量最大的問題正在于如何解決固體材料本身客觀存在的表面粗糙度、化學(xué)多樣性、異構(gòu)性問題。雖然有Chibowski等算法對(duì)此進(jìn)行了思考并付儲(chǔ)實(shí)踐。但是實(shí)際上,無論是何種算法,在真正應(yīng)用于固體的表面自由能測(cè)量時(shí),其前提假設(shè)一定是:
該分析材料最好不存在Wenzel-Cassie模型的接觸角滯后或特殊表面修飾的,舉例而言,不能采用測(cè)試得到的荷葉的接觸角值并用此角度值去進(jìn)行套用固體表面自由能分析模型去評(píng)估其表面自由能,如此種種。
接觸角測(cè)量儀或水滴角測(cè)量儀的應(yīng)用包括哪些?